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Suppression and enhancement of soliton switching during interaction
in periodically twisted birefringent fibers

R. Radhakrishnan and M. Lakshmanan
Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University, Tiruchirapalli 620 024, Tamil Nadu, India

~Received 3 August 1998; revised manuscript received 22 March 1999!

Soliton interaction in periodically twisted birefringent optical fibers has been analyzed analytically with
reference to soliton switching. For this purpose we construct the exact general two-soliton solution of the
associated coupled system and investigate its asymptotic behavior. Using the results of our analytical approach
we point out that the interaction can be used as a switch to suppress or to enhance soliton switching dynamics,
if one injects a multisoliton as an input pulse in the periodically twisted birefringent fiber.
@S1063-651X~99!07308-0#

PACS number~s!: 42.81.Dp, 41.20.Jb, 42.65.Tg
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It is a well-known fact that single-core fiber supports tw
distinct modes of propagation as a result of the birefringe
effect, which can be introduced through twisting the fib
during the preform stage of formation or through the str
induced birefringence mechanism. For many years
propagation of solitons in stress induced birefringent non
ear Kerr media with reference to optical fibers has been
subject of intensive research for theoretical as well as exp
mental investigations@1#. The topic of propagation in twisted
birefringent optical fiber has also gained considerable in
est theoretically and experimentally recently as most of
nonlinear directional couplers are based on such fibers.
may mention the example of the rocking rotator@1# which
can be used as a switching device at high power@2# and as a
filter at low power@3#.

Soliton propagation in the periodically twisted birefrin
gent fiber is usually described by using the coupled nonlin
Schrödinger ~CNLS! family of equations@1,2#. However,
such CNLS equations are in general not completely in
grable. Interestingly, if we assume the value of the elliptic
angle to be 35° then the dynamics of soliton interaction i
periodically twisted birefringent fiber coupler can be d
scribed by coupled wave equations of the form@4#

iq1z1q1tt1rq11¸q212m~ uq1u21uq2u2!q150,
~1!

iq2z1q2tt2rq21¸q112m~ uq1u21uq2u2!q250,

whereq1(z,t) and q2(z,t) are slowly varying envelopes o
two orthogonally polarized modes,z and t are, respectively,
the normalized distance and time, and¸ andr are the nor-
malized linear coupling constants caused by the perio
twist of the birefringence axes and the phase-velocity m
match from resonance, respectively. If the linear coupl
constants are absent~that is,¸5r50), then one can easily
recognize the system~1! to be the celebrated integrab
Manakov model@5#. The resulting Manakov equation is re
ceiving renewed attention recently as it describes the eff
of averaged random birefringence on an orthogonally po
ized pulse in a real fiber@6#. When the birefringence axes o
a fiber are periodically twisted during the drawing proce
there is a periodic intensity exchange between the ortho
nally polarized modes@1–4# and it can be modeled by Eq
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~1! if the value of the ellipticity angle is 35°@4#. The linear
coupling length where the maximum power is transferr
from one mode to the other isp/(2A¸21r2). At the reso-
nance wavelength, the linear parameterr50 and the linear
coupling length increases top/(2¸). The schematic of the
experimental apparatus used to observe switching chara
in the periodically twisted birefringent fiber is given in Re
@2#. Particularly the dependence of switching characters
the input power, operating wavelength, twist magnitude, a
twist period are described, for example, in Refs.@2,4#.

Considerable attention has been paid in the literat
@1,5,7,8# to studying soliton collision in the birefringent fi
ber. Particularly by using the system~1! in the absence of
linear coupling terms Manakov@5# pointed out that during
soliton collision their velocities and amplitudes~intensities!
do not change but the associated unit polarization vector
change provided they are neither parallel nor orthogonal~see
also the paper of Silmon-Clyde and Elgin@8# for a discussion
in terms of Stokes vectors!. Further, Menyuk@7# has ob-
served at the value of the ellipticity angle of 35°, where t
Manakov equation holds good, that a soliton of one polari
tion when interacting with a switching pulse of the oth
polarization does not develop a shadow and also does
change shape. However, very recently we have proved@9# by
constructing the most general two-soliton solution of t
Manakov model that it has the property that a soliton in
birefringent fiber can in general change its shape after in
action due to a change in intensity distribution among
modes even though the total energy is conserved. In
paper we investigate the implication of this property of t
solitons when the additional effects due to the periodic ro
tion of birefringence axes are included by constructing
exact two-soliton solution of the system~1!. In particular, we
point out that interaction can be used as a switch to supp
or to induce soliton switching, if we inject a multisoliton a
an input pulse in the periodically twisted birefringent fibe

The coupled system~1! reduces to the integrable Mana
kov model@5#,

iq1Mz1q1Mtt12m~ uq1Mu21uq2Mu2!q1M50,
~2!

iq2Mz1q2Mtt12m~ uq1Mu21uq2Mu2!q2M50
2317 © 1999 The American Physical Society
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~the subscriptM refers to the Manakov model! under the
transformation@4#

q15cos~u/2!eiGzq1M2sin~u/2!e2 iGzq2M ,
~3!

q25sin~u/2!eiGzq1M1cos~u/2!e2 iGzq2M ,

where G5(r21¸2)1/2 and u5tan21(¸/r). Bélanger and
Paré@10# and also briefly Agrawal@1# have shown that the
system~1! without linear self-coupling (r50) has simple
solitary wave solutions exhibiting energy exchange betw
the modes. By using the one-soliton solution of the Manak
model ~2! in Eq. ~3!, Potasek@4# has pointed out the poss
bility of periodic intensity exchange between the orthog
nally polarized modesq1 andq2 in the coupled system~1!,
when both the linear coupling constants¸ andr are present.
An interesting question arises here when one considers
tisoliton solutions for the Manakov model that admits bo
elastic and inelastic~shape changing! types of collisions de-
pending upon the initial conditions or arbitrary parameters
shown in Ref.@9#. Then how do the switching and energ
sharing properties get modified for the multisoliton solutio
of the system~1!? We show in this paper that indeed nov
features in the intensity sharing and different switching pr
erties do arise when the most general two-soliton solutio
considered for Eq.~1!.

For our analysis we make use of the general two-soli
solution of the Manakov system~2!, reported in@9#, and
obtain the corresponding two-soliton solution of Eq.~1!
through Eq.~3!. It has the form

q15$@cos~u/2!eiGza12sin~u/2!e2 iGzb1#eh1

1@cos~u/2!eiGza22sin~u/2!e2 iGzb2#eh2

1@cos~u/2!eiGz1d12sin~u/2!e2 iGz1d1
8
#eh11h1* 1h2

1@cos~u/2!eiGz1d2

2sin~u/2!e2 iGz1d2
8
#eh11h21h2* %/Dn ,

q25$@sin~u/2!eiGza11cos~u/2!e2 iGzb1#eh1

1@sin~u/2!eiGza21cos~u/2!e2 iGzb2#

1@sin~u/2!e2 iGz1d11cos~u/2!e2 iGz1d18#eh11h2* 1h2

1@sin~u/2!eiGz1d21cos~u/2!e2 iGz1d18#

3eh11h21h2* %/Dn ~4!

~the asterisk denotes complex conjugation!. Here

Dn511exp~h11h1* 1R1!1exp~h11h2* 1d0!

1exp~h1* 1h21d0* !1exp~h21h2* 1R2!

1exp~h11h1* 1h21h2* 1R3!

and

h j5kj~ t1 ik jz!, j 51,2.

The parameters
n
v

-

ul-

s

s
l
-
is

n

exp~d1!5~k12k2!~a1k212a2k11!/~k11k1* !~k1* 1k2!,

exp~d2!5~k22k1!~a2k122a1k22!/~k21k2* !~k11k2* !,

exp~d1
8 !5~k12k2!~b1k212b2k11!/~k11k1* !~k1* 1k2!,

exp~d2
8 !5~k22k1!~b2k122b1k22!/~k21k2* !~k11k2* !,

exp~d0!5k12/~k11k2* !,exp~R1!5k11/~k11k1* !,

exp~R2!5k22/~k21k2* !,

exp~R3!5uk12k2u2~k11k222k12k21!/~k11k1* !

3~k21k2* !uk11k2* u2,

and

k i j 5m~a ia j* 1b ib j* !~ki1kj* !21, i , j 51,2.

The six arbitrary complex parametersa1, a2 , b1 ,
b2 , k1, andk2 determine the amplitude, velocity, and pha
of the asymptotic soliton forms of Eq.~4!. Now in order to
bring out the nature of the solitons of Eq.~1! and their inter-
actions including exchange of energy we carry out
asymptotic analysis of the solution~4!. To be specific we
choose the arbitrary complex parameterski ,i 51,2, ask1I
.k2I , k1R.0 andk2R.0 ~here subscriptsI and R refer to
the imaginary and real parts!.

(I) Limit z˜2`: As z˜2` we can identify two inde-
pendent solitons denoted by soliton 1 and soliton 2 with
above choices ofk1 andk2. Soliton 1 will be centered around
h1R5k1R(t22k1Iz).0 ~when h2R˜2`) and soliton 2
will be centered aroundh2R5k2R(t22k2Iz).0 ~whenh1R
˜`).

(a) Soliton 1(h1R.0,h2R˜2`):

q1>@cos~u/2!eiGzA1M
122sin~u/2!e2 iGzA2M

12 #q12,
~5!

q2>@sin~u/2!eiGzA1M
121cos~u/2!e2 iGzA2M

12 #q12,

where q125k1R exp(ih1I)sech(h1R1R1/2),h1I5k1I t1(k1R
2

2k1I
2 )z, (A1M ,

12 A2M
12) 5 @m (a1a1* 1b1b1* )#21/2 (a1,b1),

anduA1M
12 u21uA2M

12 u251/m. Herem11/2(A1M ,
12 A2M

12) refers to
the polarization unit vector of the Manakov one-soliton so
tion, which can be obtained from Eq.~5! by substituting
u5G50, superscripts 12 denote soliton 1 at the limit
z˜2`, and subscripts 1 and 2 refer to the modesq1 and
q2. Equation~5! exhibits the same form of the one-solito
solution of Eq.~1! reported by Potasek in Ref.@4#. If we
parametrize @8# the unit polarization vector as
m11/2(A1M

12 ,A2M
12)5„cos(up

12)exp (iap1
12) , sin (up

12) exp (iap2
12)…

then we can identifyup
12 as the polarization angle and th

phasesap1
12Þap2

12 correspond to the state of elliptical pola
ization.

(b) Soliton 2(h2R.0,h1R˜`):

q1>@cos~u/2!eiGzA1M
222sin~u/2!e2 iGzA2M

22 #q22,
~6!

q2>@sin~u/2!eiGzA1M
221cos~u/2!e2 iGzA2M

22 #q22,

where
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q225k2R exp~ ih2I !sech@h2R1~R32R1!/2#,

h2I5k2I t1~k2R
2 2k2I

2 !z,

~A1M ,
22 A2M

22 !5~a1 /a1* !c@m~a2a2* 1b2b2* !#21/2

3@~a1,b1!k11
212~a2,b2!k21

21#,

uA1M
22 u21uA2M

22 u251/m,

in which

a15~k11k2* !@~k12k2!~a1* a21b1* b2!#1/2

and

c5@1/uk12u221/k11k22#
1/2.

It is interesting to note from Eqs.~5! and~6! that the form of
A1M

22 and A2M
22 in Eq. ~6! differs from the valuesA1M

12 and
A2M

12 in Eq. ~5! and the former contains more paramete
even though Eq.~6! is an exact one-soliton solution of th
system~1! just like the solution~5!. Further, in the specia
casea1 :a25b1 :b2, the form of Eq.~6! reduces to the form
of Eq. ~5! with parameters specifying soliton 2. So Eq.~6!
may be considered as the most general one-soliton solu
form of Eq. ~1!.

II. Limit z˜`: We now analyze the form of the soliton
after interactions asz˜`.

(a) Soliton 1(h1R.0,h2R˜`):

q1>@cos~u/2!eiGzA1M
112sin~u/2!e2 iGzA2M

11 #q11,
~7!

q2>@sin~u/2!eiGzA1M
111cos~u/2!e2 iGzA2M

11 #q11,

where

q115k1Rexp~ ih1I !sech@h1R1~R32R2!/2#,

~A1M ,
11 A2M

11 !5~a2 /a2* !c@m~a1a1* 1b1b1* !#21/2

3@~a1,b1!k12
212~a2,b2!k22

21#,

uA1M
11 u21uA2M

11 u251/m,

in which

a25~k21k1* !@~k12k2!~a1a2* 1b1b2* !#1/2.

Note thatA1M
11ÞA1M

12 and A2M
11ÞA2M

12 , except whena1 :a2

5b1 :b2, corresponding to pure elastic collision in th
Manakov model@9#.

(b) Soliton 2(h2R.0,h1R˜2`):

q1>@cos~u/2!eiGzA1M
212sin~u/2!e2 iGzA2M

21 #q21,
~8!

q2>@sin~u/2!eiGzA1M
211cos~u/2!e2 iGzA2M

21 #q21,

where

q215k2R exp~ ih2I !sech~h2R1R2/2!,

A1M
21 A2M

21)5@m~a2a2* 1b2b2* !#21/2~a2,b2!,

and
,

on

uA1M
21 u21uA2M

21 u251/m.

Here also A1M
21ÞA1M

22 and A2M
21ÞA2M

22 , unless a1 :a2

5b1 :b2.
Now we recognize from Eqs.~5!–~8! that not only the

phase factors but also the overall shapes of the solitons
modified ~due to the intensity redistribution among the so
tons! after undergoing interaction when the two coupled o
solitons~5! and~6! move fromz˜2` to z˜` as shown in
Eq. ~7! and Eq.~8!. To facilitate the understanding of th
above behavior with reference to the optical soliton switc
ing between the orthogonally polarized modes, it is con
nient to obtain the oscillating parts of the intensities asso
ated with the asymptotic forms~5!–~8! as

U ql~z,t !

qn7~z,t !
U2

5uAlM
n7u2cos2~u/2!1uAjM

n7u2sin2~u/2!

1~21! l uAlM
n7uuAjM

n7usin~u!

3cos~2Gz1fn7!,

l , j 51,2~ lÞ j !, z˜7` ~9!

where fn75tan21(A1MI
n7 /A1MR

n7 )2tan21(A2MI
n7 /A2MR

n7 ). The
presence or absence of the last term involving the fac
cos(2Gz1fn7) plays a crucial role in the switching behavio
of solitons as demonstrated below.

As we have mentioned before, the values ofAjM
n2 ( j ,n

51,2) change to new valuesAjM
n1 due to the collision be-

tween two copropagating solitons, namely, soliton 1 a
soliton 2, without violating the conditionuA1M

n7 u21uA2M
n7 u2

51/m. The amount of change (AjM
n12AjM

n2) can be estimated
by assigning suitable values to the arbitrary parametersk1 ,
k2 , a1 , a2 , b1, and b2, appearing in the expression
for AjM

n7 ( j ,n51,2). Further, from Eq.~9! it is obvious
that depending upon the values ofuAjM

n7u, the nature of
switching dynamics supported by the system~1! also
changes. The change inAjM

n7 can be parametrized a
„cos(up

n7)exp(iap1
n7),sin(up

n7)exp(iap2
n7)…, where as long as the

phasesap1
n7Þap2

n7 the state of polarization is preserved du
ing interaction. Therefore, in general without affecting t
state of polarization, the switching dynamics can be chan
just by changingAjM

n7 with the help of the polarization angle
In the following we briefly discuss the different chang
which can occur in the intensity exchange betweenq1 andq2
modes with respect to soliton 1 and soliton 2 due to
above-mentioned collision by consideringuql /qn2u2 and
uql /qn1u2 defined in Eq.~9! for each l 51,2 and n51,2
value.

Case 1:All the uAjM
n7u ’s ( j ,n51,2) are nonzero. In this

case due to the presence of the cos(2Gz1fn7) term on the
right hand side of Eq.~9!, there is a periodic intensity switch
ing which is always present in both the solitons and in b
the components before as well as after the interaction.
course the conservation relationsuA1M

n2 u21uA2M
n2 u25uA1M

n1 u2

1uA2M
n1 u251/m for the total intensity are always valid. How

ever, the switching dynamics appearing before and after
teraction are not similar in form, due to the conditionAjM

n1

ÞAjM
n2 , j ,n51,2, except whena1 :a25b1 :b2 as mentioned
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FIG. 1. Typical evolution of the intensity profilesuq1u2 anduq2u2 of the two-soliton solution~4!, ~a! showing the suppression in switchin
between the two modes ofs1 soliton and~b! showing the suppression in switching ofs1 soliton and enhancement ins2 soliton ~while
undergoing a large phase shift! for the parameter values given in the text.
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the periodically varying intensities.

Case 2:Any one of theuAjM
n7u ’s is zero and others ar

nonzero. For example, ifuA1M
11 u;0, corresponding to the

condition a2(k21k2* )(a1a2* 1b1b2* )5a1(ua2u21ub2u2)(k1

1k2* ), then the switching in the intensity of soliton 1 ge
fully suppressed in both the modesq1 andq2, while it per-
sists for the other soliton. This is illustrated in Fig. 1~a!
for the chosen parameter values, namely,k1511 i , k2
5 22 i , a15 b15b251, a25(391 i80)/89@.exp(i64°)#,
r50.25, and ¸50.5, for which uA1M

12 u;0.7, uA1M
22 u

;0.5, uA2M
12 u;0.7, uA2M

22 u;0.86, uA1M
11 u;0.06, uA1M

21 u;0.7,
uA2M

11 u;0.99, anduA2M
21 u;0.7, satisfying the condition tha

uA1M
11 u;0. A similar phenomenon can be seen ifuA2M

11 u;0
instead ofuA1M

11 u;0. But if we chooseuAjM
21u;0 ( j 51 or

j 52) the periodic intensity exchange with respect to soli
2 will be suppressed, while it persists in soliton 1. On t
other hand, ifuAjM

n2u;0 ( j 51 or j 52; n51 or n52!, then
there is no switching in the intensity of solitonn before
interaction, but the switching appears after interaction in t
soliton and so there is an inducement of switching due to
interaction. Thus the interaction itself acts as a switch
suppress or to enhance the switching dynamics.

Case 3:Any two of the uAjM
n7u ’s are zero and the other

are nonzero without violating the conservation conditio
For concreteness, letuA1M

n1 u;0 (n51,2), which implies the
conditiona1;a2;0. It implies thatuA1M

n2 u (n51,2) should
also simultaneously vanish. Consequently there is no swi
ing between the modesq1 and q2 either before or after in-
of

n

t
e
o

.

h-

teraction and there will be only inelastic~shape changing!
scattering as discussed for the Manakov model in Ref.@9#.
Similar observations can also be made if one makes any
of the uAjM

n7u ’s vanish. However, one can identify the inte
esting possibility of switching existing in soliton 1 only be
fore interaction, which gets interchanged with soliton 2 af
interaction, by allowing one of the twouAjM

22u ’s and another
one of theuAjM

11u ’s simultaneously to take the value zer
corresponding to the condition

@ uk11k2* u2~ ua1u21ub1u2!~ ua2u21ub2u2!#

5@~k11k1* !~k21k2* ! ua1a2* 1b1b2* u2#.

Figure 1~b!, for the chosen parameters, namely,k151
1 i0.1, k2512 i0.1, a150.861 i0.5, a250.51 i0.86, b1
50.71 i0.72, b250.441 i0.9, andr5¸50.25, for which
uA1M

12 u;0.7, uA1M
22 u;0.05, uA2M

12 u;0.7, uA2M
22 u;0.99, uA1M

11 u
;0.04, uA1M

21 u;0.7, uA2M
11 u;0.99, anduA2M

21 u;0.7 satisfying
the above condition, shows that the interaction induces
periodic intensity exchange between the two modes of s
ton 2 while it suppresses the switching dynamics in soliton

To conclude, by studying the interaction between two c
propagating solitons in the periodically twisted birefringe
fiber with reference to soliton switching, we have observ
several possible ways to use interaction as a switch to s
press or to induce the switching dynamics. The basic und
lying mechanism of such possibilities is the inelastic~shape
changing! nature of the soliton interaction which arises e
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sentially due to changes in the polarization angle and s
the overall amplitude of the solitons. Since Mollenaueret al.
@8# have demonstrated polarization scattering by solit
soliton collision, it shoud also be possible to experimenta
study the phenomena described in this paper by using
cially fabricated optical fibers. These possibilities shou
J.

. H

pt.

n,
in

-
y
e-

have important ramifications in nonlinear switching devic
like the rocking rotator.
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