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Suppression and enhancement of soliton switching during interaction
in periodically twisted birefringent fibers
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Soliton interaction in periodically twisted birefringent optical fibers has been analyzed analytically with
reference to soliton switching. For this purpose we construct the exact general two-soliton solution of the
associated coupled system and investigate its asymptotic behavior. Using the results of our analytical approach
we point out that the interaction can be used as a switch to suppress or to enhance soliton switching dynamics,
if one injects a multisoliton as an input pulse in the periodically twisted birefringent fiber.
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PACS numbe(s): 42.81.Dp, 41.20.Jb, 42.65.Tg

It is a well-known fact that single-core fiber supports two (1) if the value of the ellipticity angle is 35P4]. The linear
distinct modes of propagation as a result of the birefringenceoupling length where the maximum power is transferred
effect, which can be introduced through twisting the fiberfrom one mode to the other is/(2x?+ p?). At the reso-
during the preform stage of formation or through the stressiance wavelength, the linear parameier0 and the linear
induced birefringence mechanism. For many years theoupling length increases to/(2x). The schematic of the
propagation of solitons in stress induced birefringent nonlinexperimental apparatus used to observe switching characters
ear Kerr media with reference to optical fibers has been thén the periodically twisted birefringent fiber is given in Ref.
subject of intensive research for theoretical as well as exper{2]. Particularly the dependence of switching characters on
mental investigationgl]. The topic of propagation in twisted the input power, operating wavelength, twist magnitude, and
birefringent optical fiber has also gained considerable intertwist period are described, for example, in R¢&4].
est theoretically and experimentally recently as most of the Considerable attention has been paid in the literature
nonlinear directional couplers are based on such fibers. Orj@,5,7,9 to studying soliton collision in the birefringent fi-
may mention the example of the rocking rotafat which  ber. Particularly by using the systefh) in the absence of
can be used as a switching device at high poéand as a linear coupling terms Manako}5] pointed out that during
filter at low power[3]. soliton collision their velocities and amplitudéstensities

Soliton propagation in the periodically twisted birefrin- do not change but the associated unit polarization vectors do
gent fiber is usually described by using the coupled nonlineachange provided they are neither parallel nor orthog(see
Schrainger (CNLS) family of equations[1,2]. However, also the paper of Silmon-Clyde and EIgBj for a discussion
such CNLS equations are in general not completely intein terms of Stokes vectorsFurther, Menyuk[7] has ob-
grable. Interestingly, if we assume the value of the ellipticityserved at the value of the ellipticity angle of 35°, where the
angle to be 35° then the dynamics of soliton interaction in avianakov equation holds good, that a soliton of one polariza-
periodically twisted birefringent fiber coupler can be de-tion when interacting with a switching pulse of the other

scribed by coupled wave equations of the fdrh polarization does not develop a shadow and also does not
] change shape. However, very recently we have pro9hdy
i01,+ Que+ pa+ %02+ 2(|as|*+]02]%) 1 =0, constructing the most general two-soliton solution of the
(1) Manakov model that it has the property that a soliton in a
02, Qo= pOp+ 201 + 24(|01 |+ 02| 2=0, birefringent fiber can in general change its shape after inter-

action due to a change in intensity distribution among the
whereq;(z,t) andqy(zt) are slowly varying envelopes of modes even though the total energy is conserved. In this
two orthogonally polarized modes,andt are, respectively, paper we investigate the implication of this property of the
the normalized distance and time, andand p are the nor-  sglitons when the additional effects due to the periodic rota-
malized linear coupling constants caused by the periodigion of birefringence axes are included by constructing the
twist of the birefringence axes and the phase-velocity misexact two-soliton solution of the systeft). In particular, we
match from resonance, respectively. If the linear couplingyoint out that interaction can be used as a switch to suppress
constants are abse(that is, x=p=0), then one can easily or to induce soliton switching, if we inject a multisoliton as
recognize the systenil) to be the celebrated integrable an input pulse in the periodically twisted birefringent fiber.

Manakov mode(5]. The resulting Manakov equation is re-  The coupled systerfl) reduces to the integrable Mana-
ceiving renewed attention recently as it describes the effectigov model[5],

of averaged random birefringence on an orthogonally polar-
ized pulse in a real fibdi6]. When the birefringence axes of . 2 2 _
a fiber are periodically twisted during the drawing process 1920z + Aamee+ 244(|daw] *+ | dzm ) dm =0,
there is a periodic intensity exchange between the orthogo- @
nally polarized mode$§1—4] and it can be modeled by Eq. i9omzt Qomte+ 2(|A1ml?+1d2m|2) Gom=0
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(the subscriptM refers to the Manakov modelinder the exp(81) = (ky—Ky) (@1 ko1~ aarcy ) (Ky+ K5 (KE +ky),
transformation 4]

. . exp( 8,)=(k,—k - I(ky+Kk5) (ki +Kk5),
q1=cos(0/2)e'rzq1,v|—sin(0/2)e*'rzq2,\,|, P(32) = (Ko —Ky)(@ak1o— @1k20) (Ko + K3 ) (K1 +K3)

) ; (3) "N — _ _ * *
Qo= Sin( 0/2) 62y, + CoS 012)e T2 exp( 1) = (Ky—Ka) (Bikar— Bar1)/ (Ky +KI) (KT +Kz),

where I'=(p2+ »%)Y2 and #=tan 1(x/p). Beanger and exp(85) = (ko= Ky)(Bak1o— Bik2d)/ (Ko + K5 ) (ki +K),
Pare[10] and also briefly Agrawal1] have shown that the

system(1) without linear self-coupling 4=0) has simple exp( o) = k1p/ (K1 +K3 ), eXp(Ry) = 11/ (K +K7),
solitary wave solutions exhibiting energy exchange between .

the modes. By using the one-soliton solution of the Manakov exXp(Ry) = kzo/ (ko +K3),

model (2) in Eq. (3), Potase4] has pointed out the possi- ) .
bility of periodic intensity exchange between the orthogo- exp(Ra) = |y —ko| (k116 22— K1ai2)/ (Ky +KT)
nally polarized modes|; andq, in the coupled systerfi), X (ko+ k%) |ky + K3 |2,

when both the linear coupling constant&indp are present.

An interesting question arises here when one considers mujngd

tisoliton solutions for the Manakov model that admits both

elastic and inelasti¢shape changingypes of collisions de- Kij = pajaf +ﬁi,8]*)(ki+k}‘)‘1, i,j=1,2.

pending upon the initial conditions or arbitrary parameters as

shown in Ref.[9]. Then how do the switching and energy ~ The six arbitrary complex parameters;, a,, fi,

sharing properties get modified for the multisoliton solutionsB2, ki, andk, determine the amplitude, velocity, and phase

of the system(1)? We show in this paper that indeed novel of the asymptotic soliton forms of E¢4). Now in order to

features in the intensity sharing and different switching propring out the nature of the solitons of Ed) and their inter-

erties do arise when the most general two-soliton solution i@ctions including exchange of energy we carry out an

considered for Eq(1). asymptotic analysis of the solutiod). To be specific we
For our analysis we make use of the general two-solitorchoose the arbitrary complex parametérsi =1,2, asky,

solution of the Manakov systert®), reported in[9], and  >Kp, kK;g>0 andk,g>0 (here subscript$ and R refer to

obtain the corresponding two-soliton solution of Eg) the imaginary and real pajts

through Eq.(3). It has the form (1) Limit z— —: As z——o we can identify two inde-
. _ pendent solitons denoted by soliton 1 and soliton 2 with the
0, ={[cog 0/2)e' ?a; —sin( 6/2)e~'T2 B, Je™ above choices df; andk,. Soliton 1 will be centered around

71r=Kir(t—2ky;2)=0 (when 7,r——») and soliton 2
will be centered aroundy,g=k,r(t—2k,,z)=0 (when 7,5
—0),

(a) Soliton 1(71g=0,7,r— —©):

+[cog 0/2) e 2a, — sin( 0/2) e~ 1B, ]e72

+[cog 6/2)e'T?" 91— sin(g/2)e~ T2+ 5i]ev1+ o

irz+é6 . .
+loodal2)em = a1=[cog 012)e ALy, —sin( 12 e~ T AL, 1at

—sin( 0/2)e_irz+52]e771+ 2t 77;(}/Dni QZE[SIH( G/Z)GiFZAi,\_/ﬁ'COS H/Z)E_iFZA%,\_A]ql_ ®)

T i —ir, B
d2={[sin(6/2)e" *a, +cod B12)e""" 2, ]e™ where g'~ =k, exp( 7y)sech(pir+ R1/2):771|:k1|t+(k§R

+[sin(6/2)e 2a,+cog /2)e117B,] —Ki)z, (Al Azw) = [ (anaf +B1B3)] Y2 (a1 By),
, X and|Apy |2+ |AZyl?=1u. Herep " Y3(ALy,  AZy,) refers to
+[sin(68/2)e™ "1 %1+ cog 0/2)e T2+ o1]emt 72 T 72 the polarization unit vector of the Manakov one-soliton solu-
A . ) tion, which can be obtained from E@5) by substituting
+[sin(0/2)e'12* %2+ coq 6/2)e~ 171 %1] #=I"=0, superscripts + denote soliton 1 at the limit
N z— —o, and subscripts 1 and 2 refer to the modgsand
Xemntmnrnz}D, (4 q,. Equation(5) exhibits the same form of the one-soliton

solution of Eq.(1) reported by Potasek in Ref4]. If we
parametrize [8] the unit polarization vector as
1 Y2(ALAG) = (CosE; ) exp (e ) . sin (67) exp (e, ))
then we can identifyﬂé_ as the polarization angle and the

(the asterisk denotes complex conjugatidiere

Dp=1+exp 7+ 77 + Ry) +exp( 9.+ 75 + &)

+exp( i + 7ot 85) +exp( o+ 75 +Ry) phaseSaéI #* a%,z_ correspond to the state of elliptical polar-
ization.
+exp(ny+ 71 + 72t 75 +R3) (b) Soliton 2( 7,r=0,7;r—%):
and qu=[cog 6/2)e" *Afy, —sin(6/2)e " *AZy 1%,
: : . : (6)
7j=k(t+ik;z), j=1,2. 0.=[sin( 6/2)e'"?A2,, + cog 6/2)e "?A3, 197,

The parameters where



PRE 60
9" =kor eXp(i 75))sect 7, + (Rg— Ry)/2],
72 =kat+(kig—k5))z,
(Afw, ASw)=(aw/ai)clu(azal +B,p3)] M
X[y 1) kit = (a2 B2) K51l
| Al >+ | AGu | ?= LU,
in which
a;= (ki +k3)[ (ki — ko) (af ap+ B B2) 1"
and

c=[1/| k15?— 1lk11K5] "2

It is interesting to note from Eq$5) and(6) that the form of
A%, and A3y, in Eq. (6) differs from the valuesAi,, and

Ay, in Eq. (5) and the former contains more parameters,

even though Eq(6) is an exact one-soliton solution of the
system(1) just like the solution(5). Further, in the special

casea;:a,=B1:8,, the form of Eq.(6) reduces to the form

of Eq. (5) with parameters specifying soliton 2. So E)

may be considered as the most general one-soliton solutionhere ¢"*=tan *(A]y;,/

form of Eq. (2).

[I. Limit z—oc: We now analyze the form of the solitons
after interactions ag— .

(a) Soliton 1(71g=0,m,r—>):

qu=[cog 6/2)e" *ALy —sin(6/2)e" A1t

‘ . (7)
d,=[sin(8/2)e'T?AL}, + cog 6/2)e 'T2AS S 19T,
where

q't =kyrexpli ny))sech n;p+ (Rz— R,)/2],

(Aly Agw) = (az/a3)cl u(asaf + By BT)] 12

X[(ayB1) k15 — (@2 B2) K35,
|ATw I+ |AZm] 2= 1Uu,
in which

ap= (Ko +Ki)[(ky—Kp) (aya3 + B185) Y2

Note thatAl, #Aly and A3y #A3y , except whena:a,

= B1:Bo, correspondlng to pure elastic collision in the
Manakov mode[9].

a1=[cog 0/2)e'"?A%,, — sin( 6/2)e 1 TZA3, 192

) . 8
do=[sin(0/2)e'T?AZ} + cog 6/2)e 'T?AZf 12T, ®

where
9" =kor eXpi 7)) secti 7+ Ro/2),
Atw Adm) =[ (a0l +B2p3)]1 YA az o),
and
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|AZw 2+ |AZH 2= 1.

Here also A%y, #A2,
=pB1:B2-

Now we recognize from Eq¥5)—(8) that not only the
phase factors but also the overall shapes of the solitons get
modified (due to the intensity redistribution among the soli-
tong after undergoing interaction when the two coupled one
solitons(5) and(6) move fromz— —« to z—% as shown in
Eq. (7) and Eq.(8). To facilitate the understanding of the
above behavior with reference to the optical soliton switch-
ing between the orthogonally polarized modes, it is conve-
nient to obtain the oscillating parts of the intensities associ-
ated with the asymptotic form&)—(8) as

and A% #A3,, unless a;:a,

Lz’t) =|Al\ [7coS(0/2) +|Afy |*sin(6/2)
a"(zt)
— DAL (A7 sin(6)
Xcos{2Fz+¢“+),
Li=121#)), z—Fo (9)
Tvr) —tan (A% /ASuR). The

presence or absence of the last term involving the factor
cos(d'z+ ¢") plays a crucial role in the switching behavior
of solitons as demonstrated below.

As we have mentioned before, the valuesA?',’(] (j,n
=1,2) change to new value@;ﬂ\jlr due to the collision be-
tween two copropagating solitons, namely, soliton 1 and
soliton 2, without violating the conditiofA]|%+ A5y, |2
=1/u. The amount of changeAW—A}‘,\;) can be estimated
by assigning suitable values to the arbitrary paramekers
ks, @y, az, B1, and B,, appearing in the expressions
for JM (j,n=1,2). Further, from Eq.9) it is obvious
that depending upon the values pA{y|, the nature of
switching dynamics supported by the systefh) also
changes. The change i ]M can be parametrized as
(cos(t&",}*)expﬁap ),sm(H‘Q*)expGa 5)), where as long as the
phaseSozgfvﬁozgzI the state of polarization is preserved dur-
ing interaction. Therefore, in general without affecting the
state of polarization, the switching dynamics can be changed
just by changing&?,j with the help of the polarization angle.

In the following we briefly discuss the different changes
which can occur in the intensity exchange betwgeandq,
modes with respect to soliton 1 and soliton 2 due to the
above-mentioned collision by considerifg,/q""|?> and
|g,/q"*|? defined in Eq.(9) for eachl=1,2 andn=1,2
value.

Case 1:All the |Aj wl's (j,n=1,2) are nonzero. In this
case due to the presence of the cbg@¢") term on the
right hand side of Eq.9), there is a periodic intensity switch-
ing which is always present in both the solitons and in both
the components before as well as after the interaction. Of
course the conservation relatioh&]y,|?+|ASy|%2=|Aly|?
+|ADy,|2=1/u for the total intensity are always valid. How-
ever, the switching dynamics appearing before and after in-
teraction are not similar in form, due to the condithe\ﬂv,+
;tAJM , 1,n=1,2, except whem:@,= 8;: 8, as mentioned
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FIG. 1. Typical evolution of the intensity profilég,|? and|q,|? of the two-soliton solutiori4), (a) showing the suppression in switching
between the two modes afl soliton and(b) showing the suppression in switching &f soliton and enhancement 2 soliton (while
undergoing a large phase shifor the parameter values given in the text.

before, giving rise to a partial suppression or enhancement déraction and there will be only inelastishape changing

the periodically varying intensities. scattering as discussed for the Manakov model in R&f.
Case 2:Any one of the|Af\j|'s is zero and others are Similar observations can also be made if one makes any two

nonzero. For example, ifA{y|~0, corresponding to the of the |Aj;|'s vanish. However, one can identify the inter-

condition a, (K, K3) (e + B1B8%) = a1(|as|?+|B,%)(k,  esting possibility of switching existing in soliton 1 only be-

+k3), then the switching in the intensity of soliton 1 gets fore interaction, which gets interchanged with soliton 2 after

fully suppressed in both the modas and s, while it per-  interaction, by allowing one of the twi@?, |'s and another

sists for the other soliton. This is illustrated in Figial —one of the|Ajyi|'s simultaneously to take the value zero,

for the chosen parameter values, namety=1+i, k,  corresponding to the condition

=2—i, a;= B1=B,=1, a,=(39+i80)/89 =exp(64)],

p=0.25, and »=0.5, for which |A%,T,||~O.7, |A§,\7|| [k +k*|2(|a |2+|’3 |2)(|a |2+|,8 |2)]
~0.5, |Aly|~0.7, |AZ,|~0.86, | AL} |~0.06, |A%)|~0.7, LT T T AT e
|AL|~0.99, and|A3,,|~0.7, satisfying the condition that =[(ki+k})(ko+K5) |aiak+B185]2].

|Aly|~0. A similar phenomenon can be seernAGy,|~0

instead of| Afyy|~0. But if we choosgAf\j|~0 (j=1 or  Figure ib), for the chosen parameters, nameks=1
j=2) the periodic intensity exchange with respect to soliton+i0.1, k,=1-i0.1, @;=0.86+i0.5, a,=0.5+i0.86, 3;
2 will be suppressed, while it persists in soliton 1. On the=0 7+i0.72, B>=0.44+i0.9, andp=x=0.25, for which
other hand, iflAjy[~0 (j=1 orj=2; n=1or n=2), then  |al-|~0.7, |A2,|~0.05, |Aly|~0.7, |AZ4]|~0.99, |AL}
there is no switching in the intensity of solitam before g o4, |A2}|~0.7, | ALy | ~0.99, and A, | ~0.7 satisfying
interaction, but the switching appears after interaction in thafhe apove condition, shows that the interaction induces the
soliton and so there is an inducement of switching due to0 th@eriodic intensity exchange between the two modes of soli-
interaction. Thus the interaction |t_self acts as a switch tGgn 2 while it suppresses the switching dynamics in soliton 1.
suppress or to enhance the switching dynamics. To conclude, by studying the interaction between two co-
Case 3:Any two of the|Ajy|'s are zero and the others propagating solitons in the periodically twisted birefringent
are nonzero without violating the conservation conditionsiper with reference to soliton switching, we have observed
For concreteness, I¢A7y|~0 (n=1,2), which implies the several possible ways to use interaction as a switch to sup-
conditiona;~ a,~0. It implies thaA7y,| (n=1,2) should press or to induce the switching dynamics. The basic under-
also simultaneously vanish. Consequently there is no switcHying mechanism of such possibilities is the inelagtbape
ing between the modes; and g, either before or after in- changing nature of the soliton interaction which arises es-
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sentially due to changes in the polarization angle and so ihhave important ramifications in nonlinear switching devices
the overall amplitude of the solitons. Since Mollenaeeal.  like the rocking rotator.

[8] have demonstrated polarization scattering by soliton-

soliton collision, it shoud also be possible to experimentally The authors are grateful to Dr. Jarmo Hietarinta for useful
study the phenomena described in this paper by using speliscussions. This work has been supported by the Depart-
cially fabricated optical fibers. These possibilities shouldment of Science and Technology, Government of India.
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